Some Remarks on Producing Hopf Algebras
نویسنده
چکیده
We report some observations concerning two well-known approaches to construction of quantum groups. Thus, starting from a bialgebra of inhomogeneous type and imposing quadratic, cubic or quartic commutation relations on a subset of its generators we come, in each case, to a q-deformed universal enveloping algebra of a certain simple Lie algebra. An interesting correlation between the order of initial commutation relations and the Cartan matrix of the resulting algebra is observed. Another example demonstrates that the bialgebra structure of slq(2) can be completely determined by requiring the q-oscillator algebra to be its covariant comodule, in analogy with Manin’s approach to define SLq(2) as a symmetry algebra of the bosonic and fermionic quantum planes.
منابع مشابه
Adjunctions between Hom and Tensor as endofunctors of (bi-) module category of comodule algebras over a quasi-Hopf algebra.
For a Hopf algebra H over a commutative ring k and a left H-module V, the tensor endofunctors V k - and - kV are left adjoint to some kinds of Hom-endofunctors of _HM. The units and counits of these adjunctions are formally trivial as in the classical case.The category of (bi-) modules over a quasi-Hopf algebra is monoidal and some generalized versions of Hom-tensor relations have been st...
متن کاملAlgebraic Structures on Grothendieck Groups of a Tower of Algebras
The Grothendieck group of the tower of symmetric group algebras has a self-dual graded Hopf algebra structure. Inspired by this, we introduce by way of axioms, a general notion of a tower of algebras and study two Grothendieck groups on this tower linked by a natural paring. Using representation theory, we show that our axioms give a structure of graded Hopf algebras on each Grothendieck groups...
متن کاملNOTES ON REGULAR MULTIPLIER HOPF ALGEBRAS
In this paper, we associate canonically a precyclic mod- ule to a regular multiplier Hopf algebra endowed with a group-like projection and a modular pair in involution satisfying certain con- dition
متن کاملOn the cyclic Homology of multiplier Hopf algebras
In this paper, we will study the theory of cyclic homology for regular multiplier Hopf algebras. We associate a cyclic module to a triple $(mathcal{R},mathcal{H},mathcal{X})$ consisting of a regular multiplier Hopf algebra $mathcal{H}$, a left $mathcal{H}$-comodule algebra $mathcal{R}$, and a unital left $mathcal{H}$-module $mathcal{X}$ which is also a unital algebra. First, we construct a para...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1995